GRAVIDADE DE GRACELI.


 /  [ ω   / T] / c [    [x,t] ]  =  





  /  [ ω   / T] / c [    [x,t] ]  =  





 /  [ ω   / T] / c [    [x,t] ]  =  







 /  [ ω   / T] / c [    [x,t] ]  =  





 /  [ ω   / T] / c [    [x,t] ]  =  


Cool Gif





























VARIEDADE, INTEGRAL, SUPERFÍCIE, GEOMETRIA CURVA N-DIMENSIONAL GRACELI, ESFERAS E CURVAS DE GRACELI.




definimos a integral de GRACELI de  como:

[ [ ω   / T] / c [    [x,t] ]  =  








 [ ] [
[
 [ ω   / T] / c [    [x,t] ]  =  










 [ ]  [
[
      [ ω   / T] / c [    [x,t] ]  =  



Cool Gif



E RELATIVIDADE GENERALIZADA GRACELI.





definimos a integral de GRACELI de  como:

[ [ ω   / T] / c [    [x,t] ]  =  








 [ ] [

[] [ ]

 [ ω   / T] / c [    [x,t] ]  =  










 [ ]  [

[] [ ]

      [ ω   / T] / c [    [x,t] ]  =  


















Equações de campo de Einstein








 definimos a integral de Lesbesgue de  como:





Em uma variedade riemanniana as geodésicas em torno de um ponto exibem comportamentos atípicos com relação à geometria euclidiana. Por exemplo, em um espaço euclidiano podem ter-se linhas retas paralelas cuja distância se mantem constante, entretanto, em uma variedade riemanniana os feixes de geodésicas tendem a divergir (curvatura negativa) ou a convergir (curvatura positiva), segundo seja a curvatura seccional de tal variedade. Todas as curvaturas podem ser representadas adequadamente pelo tensor de curvatura de Riemann que é definível a partir das derivadas de primeira e segunda ordem do tensor métrico. O tensor de curvatura em termos dos símbolos de Christoffel e usando a convenção de somatório de Einstein que é dada por:

Uma relação interessante que torna claro o significado do tensor de curvatura é que se só consideradas coordenadas normais  centradas em um ponto p no entorno de determinado ponto a métrica de toda variedade riemanniana pode ser escrita como:

Pode se ver que se o tensor de Riemann é anulado identicamente então localmente a métrica se aproxima da métrica euclidiana e a geometria localmente é euclidiana. No caso de que o tensor não seja nulo, seus componentes dão uma ideia de quanto se distancia a geometria da variedade riemanniana da geometria de um espaço euclidiano de mesma dimensão.




no qual  é o tensor de torção







A solução para um Universo isotrópico e homogêneo, totalmente com densidade constante e de uma pressão insignificante, é a Métrica de Friedmann-Robertson-Walker. Se aplica ao Universo em sua totalidade e conduz a diversos modelos de sua evolução que predizem um Universo em expansão. Em 2016, uma equipe de cosmólogos mostrou que o universo é "isotrópico", ou o mesmo, não importa maneira que é observado: Não há eixo de rotação ou qualquer outra direção especial no espaço.[1]

Forma matemática da equação do campo de Einstein

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.


A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :

onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:





Cool Gif

Comentários

Postagens mais visitadas deste blog